Continuum-many Boolean Algebras of the Form P(ω)/i, I Borel
نویسنده
چکیده
We examine the question of how many Boolean algebras, distinct up to isomorphism, that are quotients of the powerset of the naturals by Borel ideals, can be proved to exist in ZFC alone. The maximum possible value is easily seen to be the cardinality of the continuum 2א0 ; earlier work by Ilijas Farah had shown that this was the value in models of Martin’s Maximum or some similar forcing axiom, but it was open whether there could be fewer in models of the Continuum Hypothesis. We develop and apply a new technique for constructing many ideals whose quotients must be nonisomorphic in any model of ZFC. The technique depends on isolating a kind of ideal, called shallow, that can be distinguished from the ideal of all finite sets even after any isomorphic embedding, and then piecing together various copies of the ideal of all finite sets using distinct shallow ideals. In this way we are able to demonstrate that there are continuum-many distinct quotients by Borel ideals, indeed by analytic P-ideals, and in fact that there is in an appropriate sense a Borel embedding of the Vitali equivalence relation into the equivalence relation of isomorphism of quotients by analytic P-ideals. We also show that there is an uncountable definable wellordered collection of Borel ideals with
منابع مشابه
Characterizing the Computable Structures: Boolean Algebras and Linear Orders
A countable structure (with finite signature) is computable if its universe can be identified with ω in such a way as to make the relations and operations computable functions. In this thesis, I study which Boolean algebras and linear orders are computable. Making use of Ketonen invariants, I study the Boolean algebras of low Ketonen depth, both classically and effectively. Classically, I give ...
متن کاملTrivial Automorphisms
We prove that the statement ‘For all Borel ideals I and J on ω, every isomorphism between Boolean algebras P(ω)/I and P(ω)/J has a continuous representation’ is relatively consistent with ZFC. In this model every isomorphism between P(ω)/I and any other quotient P(ω)/J over a Borel ideal is trivial for a number of Borel ideals I on ω. We can also assure that the dominating number, d, is equal t...
متن کاملDually quasi-De Morgan Stone semi-Heyting algebras I. Regularity
This paper is the first of a two part series. In this paper, we first prove that the variety of dually quasi-De Morgan Stone semi-Heyting algebras of level 1 satisfies the strongly blended $lor$-De Morgan law introduced in cite{Sa12}. Then, using this result and the results of cite{Sa12}, we prove our main result which gives an explicit description of simple algebras(=subdirectly irreducibles) ...
متن کاملThe Completeness of the Isomorphism Relation for Countable Boolean Algebras
We show that the isomorphism relation for countable Boolean algebras is Borel complete, i.e., the isomorphism relation for arbitrary countable structures is Borel reducible to that for countable Boolean algebras. This implies that Ketonen’s classification of countable Boolean algebras is optimal in the sense that the kind of objects used for the complete invariants cannot be improved in an esse...
متن کاملLoeb Measures and Borel Algebras
It is shown that a measurable function from an atomless Loeb probability space (Ω,A, P ) to a Polish space is at least continuum-to-one valued almost everywhere. It follows that there is no injective mapping h : [0, 1] → Ω such that h([a, b]) is Loeb measurable for each 0 ≤ a < b ≤ 1 and P (h([0, 1])) > 0. Thus, when an atomless Loeb measurable algebra on an internal set of cardinality continuu...
متن کامل